ラプラス方程式をある差分化で数値計算すると高木関数になる例(F((2i+1)/^(2k+1))=0.5*(F(i/2^k)+F((i+1/2^k)) + Ck)
だいぶ前に書いたものの再掲:
昔、”無限・カオス・ゆらぎ”という本を読んで非常に面白かったのを覚えている。
その中でいちばんおもしろかったのは、差分化の方法によっては
元の微分方程式とは似ても似つかないカオス解が出ると言うところで、
その一つはロジスティック方程式の中心差分。
さらにもう一つ、”変なラプラシアン”というのが書いてあった。
(こちらの文献でも同様な話が読めます。
)
ラプラス方程式は、ΔF(x)=0ですが、
一次元だと単にd2 F / dx2 =0。
単純な差分化だとF(x) = 0.5 * (F(x+Δx) + F(x-Δx)) ということになる。これをメッシュをちょっと工夫して
F((2i+1)/2k+1)=0.5*(F(i/2k)+F((i+1)/2k)) + Ck
というように書きなおしてみる。
つまりあるkの点列が得られたとき、
次のk+1ではある点のデータは前のkの値で、
その点と隣り合ったデータを使って求めると見る(マルチグリッド)
でCk=1/2^(k+1)と選ぶ。Ckはk→∞では消えるはずの項。
(山口さんは、これはポアソン方程式じゃなくて変なラプラシアンだと言いきってますが。)
でkをだんだん増やして行った時のExcelのグラフをGIFアニメにしたのがこちら。
しかもこれはおなじくCkをk→∞で消える項1/4^kと選ぶと、
なだらかになるという。。。
単純な数値計算でも恐ろしいことになる例は多い。。。
« 京都・一乗寺の高安で唐揚げ定食を食す。巨大な唐揚げが3個。ラーメンも美味しい。 | トップページ | ラーメン横綱で麻辣担々麺を食す。 »
「学問・資格」カテゴリの記事
- 高周波(RF・マイクロ波・ミリ波・5G)関連ニュース2021年2月16日 IEEE Microwave Magazineの特集はオールデジタルのRFID、Microwave JournalはEバンド ミリ波通信に衛星や気球を使う話、アメリカの半導体企業がバイデンに投資を迫る、(2021.02.17)
- カオスを生じる電気回路、Chua’s circuitをLTspiceで回路シミュレーションしてみる。(2021.02.19)
- Labyrinth Chaos(迷宮カオス)を生むThomas-Rössler方程式のパラメータbを色々変えて、Python+Scipyでルンゲクッタ8次のDOP853(Dormand&Prince)を使って計算してGIFアニメ(2021.02.16)
- フィッツヒュー・南雲 (FitzHugh-Nagumo) 方程式をPython+Scipyでルンゲクッタ8次のDOP853(Dormand Prince)で計算。(2021.02.23)
- 「水晶振動子の等価回路計算」をカシオの高精度計算サイトkeisan.casio.jpの自作式としてUP! インピーダンスの大きさと位相がグラフ化できる。(2021.02.12)
「日記・コラム・つぶやき」カテゴリの記事
- ExcelのLET関数+SEQUENCE関数で数値計算シリーズ(その5)ワンライナーでラマヌジャンの円周率公式を使って計算する。n=2で収束した。(2021.03.01)
- mRNAワクチンやCRISPR cas9のことが全然わからんので昔買ったブルーバックスの「アメリカ版 大学生物学の教科書」を3巻まで読む、、、と思ったら11年ぶりに完全改訂されたものが出てた!(2021.03.02)
- 新型コロナウイルス、中国、日本、韓国、アメリカ、ドイツ、フランス、イギリスでの感染者数を指数関数&ロジスティック関数&Log-Logプロットでべき関数フィッティングした(2/28更新)さすがにどの国も伸びは鈍ったか。(2021.03.01)
トラックバック
この記事へのトラックバック一覧です: ラプラス方程式をある差分化で数値計算すると高木関数になる例(F((2i+1)/^(2k+1))=0.5*(F(i/2^k)+F((i+1/2^k)) + Ck):
« 京都・一乗寺の高安で唐揚げ定食を食す。巨大な唐揚げが3個。ラーメンも美味しい。 | トップページ | ラーメン横綱で麻辣担々麺を食す。 »
コメント