« 神座で麻婆麵をいただく。しっかり花椒が効いていて、辛さもありなかなか美味しかった。もちろん白菜もたっぷり。 | トップページ | Interface2025年1月号はMATLABで1ニューロンから手作り 数学&図解でディープ・ラーニング。初歩からAlexNetの転移学習、CNNまで話題が豊富で、なんとMatlab Onlineの半年ライセンスがついてくる。Simulinkや各種toolboxも使える。早速MATLAB入門オンラインコース修了した。 »

2024年12月 2日 (月)

高周波エンジニアのためのAI・機械学習入門(18)パッチアンテナ設計モジュールをPythonで作ったので、電気的に測定できる入力インピーダンス、共振周波数を与えて指向性(Directivity)をKeras3.0を用いたディープラーニング(DNN)による回帰で予測する。

さて前回はパッチサイズ(W、L)、基板厚みh、共振周波数を与えて基板誘電率が予測できるかやってみた。

今回は電気的に測定できる入力インピーダンスRinと共振周波数f0のみを与えて指向性が予測できるかやってみる。

学習データはいつものようにモンテカルロシミュレーションで作る。


import numpy as np
import patchantenna as pa

#モンテカルロシミュレーションでは基板比誘電率、厚み、中心周波数を乱数で振るが、それの最大最小
ermin = 2.0
ermax = 10.0
hmin = 0.1
hmax = 1.0
f0min = 1
f0max = 10

#モンテカルロシミュレーションでデータ作成して保存する。
#周波数と入力インピーダンスを与えて指向性を予測する。
N = 10000
np.random.seed(1)
data = np.empty((0, 2))
label = np.empty((0, 1))
for i in range(N):
    er = ermin + (ermax - ermin) * np.random.rand()
    h = hmin + (hmax - hmin) * np.random.rand()
    f0 = f0min + (f0max - f0min) * np.random.rand()    
    ant = pa.PatchAntenna(er, h, f0)
    Rin = ant.input_impedance()
    direc = ant.directivity()
    data = np.vstack((data, np.array([Rin, f0])))
    label = np.vstack((label, direc))

#保存
np.savez_compressed("directivity.npz", data=data, label=label)

 

そしてKeras3.0を用いたディープラーニング(DNN)で予測する。
まずデータを読み込み、訓練データとテストデータに分ける。


import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras

data_label = np.load("directivity.npz")
data = data_label["data"]
label = data_label["label"]
x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.3, random_state=0)

次にモデルを作る。セル数64の3層のモデル。


#正規化
normalizer = keras.layers.Normalization()
normalizer.adapt(x_train)

# Functional APIでDense層を3層にしたDNNを設定
hidden_dim = 64
inputs = keras.Input(shape=(2,))
x = normalizer(inputs)
x = keras.layers.Dense(hidden_dim, activation="relu")(x)
x = keras.layers.Dense(hidden_dim, activation="relu")(x)
x = keras.layers.Dense(hidden_dim, activation="relu")(x)
outputs = keras.layers.Dense(1)(x)

# モデルの設定
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(loss = 'mean_squared_error' ,optimizer=keras.optimizers.Adam())

そして学習させる。


batch_size = 32
epochs = 100

keras.utils.set_random_seed(1)
history = model.fit(
    x_train,
    y_train,
    batch_size=batch_size,
    epochs=epochs,
    validation_split=0.15,
)
y_pred = model.predict(x_test)
metric = keras.metrics.R2Score()
metric.update_state(y_test, y_pred)
result = metric.result()
print(result)
error = np.abs((y_test - y_pred)/y_test*100)
print(error.mean(axis=0))

R2score99.7%となかなかいい結果になった。

では図示して確認してみる。


legend = ["Directivity"]
fig, ax = plt.subplots(1, 2, figsize=(12,6))

maxvalue = y_pred.max()
ax[0].scatter(y_pred, y_test, c="r", s=5)
ax[0].plot([0,maxvalue], [0,maxvalue], "--", c="black")
ax[0].set_xlabel("推定した値", fontname='MS Gothic')
ax[0].set_ylabel("実際の値", fontname='MS Gothic')
ax[0].set_xlim(5, maxvalue)
ax[0].set_ylim(5, maxvalue)
ax[0].grid()
ax[0].legend([legend[0] + f" 平均誤差{error.mean():.2f}%"], prop={"family":"MS Gothic"})
ax[1].hist(error, bins = 100)
ax[1].set_xlabel("誤差[%]", fontname='MS Gothic')
ax[1].set_ylabel("頻度", fontname='MS Gothic')
ax[1].grid()
fig.tight_layout()
plt.show()

 

Dnndirectivity

これだけ合っていれば使えそう。次の題材は伝送線路かな。

 

« 神座で麻婆麵をいただく。しっかり花椒が効いていて、辛さもありなかなか美味しかった。もちろん白菜もたっぷり。 | トップページ | Interface2025年1月号はMATLABで1ニューロンから手作り 数学&図解でディープ・ラーニング。初歩からAlexNetの転移学習、CNNまで話題が豊富で、なんとMatlab Onlineの半年ライセンスがついてくる。Simulinkや各種toolboxも使える。早速MATLAB入門オンラインコース修了した。 »

パソコン・インターネット」カテゴリの記事

学問・資格」カテゴリの記事

日記・コラム・つぶやき」カテゴリの記事

コメント

コメントを書く

(ウェブ上には掲載しません)

« 神座で麻婆麵をいただく。しっかり花椒が効いていて、辛さもありなかなか美味しかった。もちろん白菜もたっぷり。 | トップページ | Interface2025年1月号はMATLABで1ニューロンから手作り 数学&図解でディープ・ラーニング。初歩からAlexNetの転移学習、CNNまで話題が豊富で、なんとMatlab Onlineの半年ライセンスがついてくる。Simulinkや各種toolboxも使える。早速MATLAB入門オンラインコース修了した。 »

最近の記事

最近のコメント

2025年1月
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
フォト
無料ブログはココログ